1-8-1- بهبود کاتالیست پلاتین با استفاده از بسترهای مختلف18
1-8-1-1- کربن بلک19
1-9- مطالعه اکسیداسیون الکلها روی الکتروکاتالیستهای بر پایه پلاتین20
1-9-1- سینیتیک واکنش اکسیداسیون متانول در DMFC21
1-9-2- مکانیسم اکسایش متانول22
1-9-2- اکسیداسیون 2-پروپانول و پروپیلنگلیکول روی الکتروکاتالیستهای برپایه پلاتین23
1-10- اهداف پروژه29
فصل دوم مبانی نظری
2-1- مقدمه31
2-2- تکنیکهای مورد استفاده31
2-3- ولتامتری32
2-3-1- ولتامتری با روبش خطی پتانسیل32
2-3-2- ولتامتری چرخه‏ای32
2-3-3- عوامل موثر در واکنشهای الکترودی در حین ولتامتری چرخهای33
2-3-4- نحوه عمل در ولتامتری چرخهای34
2-4- نمودارهای تافل35
2-5- روش طیف‏نگاری امپدانس الکتروشیمیایی36
2-6- مشخصهیابی سطح الکترود48
2-6-1- SEM38
2-6-2- EDS39
فصل سوم: بخش تجربی
3-1- مواد شیمیایی41
3-2- دستگاه‌های مورد استفاده41
3-3- الکترودهای بهکار گرفته شده در روشهای ولتامتری44
3-4- تهیه کاتالیست پلاتین/کربن44
3-5-تهیه جوهر کاتالیست44
3-6- آمادهسازی الکترود کربنشیشه45
فصل چهارم: بحث و نتیجهگیری
4-1- کلیات47
4-2- بررسی ریختشناسی و تجزیه عنصری47
4-3- ولتامتری چرخهایPt/C در محلول قلیایی49
4-4- بررسی فعالیت و پایداری کاتالیست Pt/Cدر محلول بازی متانول51
4-4-1- بررسی ولتاموگرام چرخهای الکترود Pt/C/GC در محلول بازی متانول51
4-4-2- بررسی منحنی‌های EIS و کرونوآمپرومتری الکترود Pt/C/GC در اکسایش متانول53
4-5- بررسی فعالیت و پایداری کاتالیست Pt/Cدر محلول قلیایی 2-پروپانول56
4-5-1- بررسی ولتاموگرام چرخه‌ای الکترود Pt/C در اکسیداسیون 2-پروپانول56
4-5-2- بررسی منحنی‌های نایکوئیست و کرونوآمپرومتری کاتالیست Pt/C در اکسایش 2-پروپانول59
4-6- بررسی فعالیت و پایداری کاتالیست Pt/Cدر اکسیداسیون 1و2-پروپان‌دی‌ال60
4-6-1- ولتامتری چرخه‌ای الکترود Pt/C/GC در محلول قلیایی 1و2-پروپان‌دی‌ال60
4-6-2-بررسی پایداری Pt/C اکسیداسیون 1و2-پروپان‌دی‌ال62
4-7- بررسی عملکرد کاتالیست پلاتین/کربن در اکسیداسیون سوخت‌های مختلف64
4-7-1- بررسی و مقایسه ولتاموگرام‌های چرخه‌ای الکترود Pt/C/GC در اکسیداسیون متانول، 2-پروپانول و 1و2-پروپان‌دی‌ال در محیط قلیایی65
4-7-2- مقایسه و بررسی نمودارهای ولتامتری روبش خطی Pt/C در اکسیداسیون الکلهای مختلف67

4-7-3- مقایسه و بررسی نمودارهای تافل کاتالیست Pt/C در اکسیداسیون الکل‌ها68
4-7-4- بررسی نمودارهای کرونوآمپرومتری الکترود Pt/C/GCدر اکسیداسیون الکل‌های مختلف69
4-7-5- مطالعات اسپکتروسکوپی امپدانس الکتروشیمیایی الکترود Pt/C/GCدر اکسیداسیون الکل‌های مختلف72
4-8-نتیجه گیری75

در این سایت فقط تکه هایی از این مطلب(به صورت کاملا تصادفی و به صورت نمونه) با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود-این مطالب صرفا برای دمو می باشد

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

4-9-پیشنهادات76
4-10-منابع77
چکیده انگلیسی

فهرست اشکال
عنوان صفحه
شکل1-1- مقایسه تبدیلات انرژی در فرایند تولید انرژی از سوخت‌های فسیلی با روند تولید انرژی در پیل‌های سوختی3
شکل1-2- پیل سوختی اولیه ساخته شده توسط ویلیام گرو5
شکل1-3 منابع تأمین کننده هیدروژن و تقاضاهای استفاده از هیدروژن6
شکل1-4- کاربردهایی از پیل سوختی در سیستم حمل و نقل دریایی، زمینی، وسایل پرتابل و مصارف نیروگاهی6
شکل1-5- نحوه‌ی عملکرد پیل سوختی پلیمری9
شکل-1-6- نحوه‌ی عملکرد پیل سوختی متانولی مستقیم12
شکل1-7- مکانیسم اکسایش متانول و انواع حدواسطهای تولیدی21
شکل1-8- مکانیسم اکسیدسیون اتیلنگلیکول و گلیسرول روی الکتروکاتالیستهای فلزی24
شکل1-9- مکانیسم واکنش اکسیداسیون 2-پروپانول25
شکل1-10- مکانیسم پیشنهادی برای اکسیدسیون 1،2-پروپاندیال28
شکل1-11- شکل شماتیک مکانیسم اکسیدسیون 1و2-پروپاندیال در محیط قلیایی29
شکل2-1- مسیر کلی واکنش الکترودی34
شکل2-2- سیگنال تهییجی برای ولتامتری چرخه ای یک موج پتانسیلی با فرم مثلثی35
شکل2-3- تصویر شماتیک از نحوهی عملکردSEM 39
شکل3-1- شمای کلی دستگاه اندازه گیری الکتروشیمیایی43
شکل3-2. شمای کلی تهیه جوهر کاتالیست Pt/C45
شکل3-3- ولتاموگرام چرخه‌ای الکترود کربن شیشه‌ای در 20 میلی‌لیتر محلول یک مولار متانول و یک مولار KOH در دمای اتاق با سرعت روبش 50 میلی ولت بر ثانیه46
شکل4-1- طیف EDS از پلاتین/کربن. ضمیمه: دادههای تجزیه عنصری حاصل48
شکل4-2- تصاویر SEM از سطح پلاتین/کربن با بزرگ‌نماییهای متفاوت50
شکل4-3- نمودار ولتامتری چرخهای الکترود Pt/C در محلولKOH 1 مولار با سرعت روبش 50 میلی ولت بر ثانیه51
شکل4-4- ولتاموگرام چرخهای کاتالیست Pt/C در محلول 1 مولار متانول و 1 مولار KOH با سرعت روبش 50 میلیولت بر ثانیه53
شکل4-5- مکانیسم کلی اکسایش متانول توسط کاتالیست Pt/C54
شکل4-6- نمودار نایکویست الکترود Pt/C/GCدر محلول 1 مولار متانول و 1 مولار KOH در پتانسیل 4/0- ولت قبل و بعد از گرفتن CV بعد از 100 چرخه با دامنه پتانسیل 10 میلیولت55
شکل4-7- نمودار کرونوآمپرومتری الکترود Pt/C/GC در محلول 1 مولار متانول و 1 مولار KOH 56
شکل4-8- ولتاموگرام چرخه‌ای الکترود Pt/C/GC در محلول 1 مولار 2-پروپانول و 1 مولار KOH با سرعت روبش 50 میلی‌‌ولت بر ثانیه57
شکل4-9- ولتاموگرام‌های چرخهای کاتالیست Pt/C در محلول 1 مولار 2-پروپانول و 1 مولار KOH با سرعت روبش 50 میلی ولت بر ثانیه در 100 چرخه59
شکل4-10- منحنی‌های نایکوئیست اکسیداسیون 2-پروپانول روی الکترود Pt/C/GCقبل و بعد از گرفتن CV بعد از 100 چرخه60
شکل4-11- نمودار کرونوآمپرومتری الکترود Pt/C/GC در محلول 1 مولار 2-پروپانول و 1 مولار KOH در پتانسیل 0.4- ولت64
شکل4-12- منحنی ولتاموگرام چرخه‌ای الکترود Pt/C/GC در الکترواکسیداسیون 1و2-پروپان‌دی‌ال با سرعت روبش 50 میلی‌ولت بر ثانیه در محلول یک مولار 1و2-پروپان‌دی‌ال و یک مولار KOH62
شکل4-13- ولتاموگرام چرخهای الکترود Pt/C/GC در محلول 1 مولار 1و2-پروپان‌دی‌ال و 1 مولار KOH با سرعت روبش 50 میلیولت بر ثانیه در 100 چرخه64
شکل4-14 منحنیهای نایکوئیست اکسیداسیون 1و2-پروپان‌دی‌ال در پتانسیل 0.4- ولت قبل و بعد از گرفتن CV65
شکل4-15- منحنیهای کرونوآمپرومتری الکترود Pt/C/GC در اکسیداسیون قلیایی 1و2-پروپان‌دی‌ال در پتانسیل 0.4- ولت65
شکل4-16- ولتاموگرام‌های چرخه‌ای مربوط به اکسیداسیون الکلها روی Pt/C در محلول 1مولار الکل و 1مولار KOH با سرعت روبش 50 میلی ولت بر ثانیه67
شکل4-17- الف. مقایسه بین پتانسیل آغازی و ب. دانسیته جریان اکسیداسیون الکلهای مختلف روی الکترود Pt/C/GC67
شکل4-18- منحنی‌های ولتامتری روبش خطی کاتالیست Pt/C در محلول یک مولار الکل و 1 مولار KOH در دمای اتاق با سرعت روبش یک میلی ولت بر ثانیه69
شکل4-19- منحنی تافل برای محاسبه مقدار ضریب انتقال () مربوط به روبش رفت اکسیداسیون متانول، 2-پروپانول و 1و2-پروپان‌دی‌ال با سرعت روبش 1 میلی ولت بر ثانیه70
شکل4-20- بررسی نمودار کرونوآمپرومتری کاتالیست Pt/C در اکسیداسیون الکل 1 مولار و KOH 1 مولار در پتانسیل 0.4- ولت71
شکل4-21- نمودار جریان بر حسب t-1/2 برای به‌دست آوردن ضریب نفوذ در اکسیداسیون الکل 1 مولار و KOH 1 مولار73
شکل 4-22- نمودار امپدانس الکتروشیمیایی الکترود Pt/C/GC در اکسیداسیون الکل‌های مختلف قبل و بعد از گرفتن CV در 100 چرخه در پتانسیل 0.4- ولت75
شکل 4-23- مدار معادل با دیاگرام‌های نایکوئیست76

فهرست جداول
عنوان صفحه
جدول1-1- معایب و مزایای سوختهای مورد استفاده در پیلهای سوختی17
جدول3-1- مشخصات مواد شیمیایی41
جدول4-1- مقایسه پارامترهای الکتروشیمیایی در اکسیداسیون بازی الکل 1 مولار + KOH 1 مولار روی کاتالیست Pt/C68
جدول 4-2- شیب‌های تافل و ضرایب انتقال الکترون به دست آمده از فعالیت الکتروکاتالیست Pt/C در محلول‌های مختلف70
جدول 4-3- دانسیته جریان نهایی (jf) و اولیه (ji) حاصل از اکسایش الکل‌های متانول، 2-پروپانول و 1و2-پروپان‌دی‌ال توسط Pt/C و نسبت ji/jf72
فهرست علائم و اختصارات
معادل فارسی معادل انگلیسی علائم و اختصارت

MMolarمولار
SSecondثانیه
PtPlatinumپلاتین
µAMicroamper میکروآمپر
CConcentrationغلظت
jCurrent densityچگالی جریان
mv s-1 Milivolt per secondمیلیولت بر ثانیه
U Potential sweep rateسرعت روبش پتانسیل
cvCyclic Voltametryولتامتری چرخهای
SEMScsnning electron microscopyمیکروسکوپی الکترون روبشی
EDSEnergy dispersive spectroscopyطیفبینی پراکنش انرژی
nNumber of exchanged electronتعداد الکنرونهای مبادله شده
c Capacitor خازن
DMFC Direct Methonol fuel cell پیل سوختی متانولی مستقیم
DAFCSDirect Alcohol Fuel cellsپیل سوختی الکلی مستقیم

فصل اول
مقدمه

فصل اول: مقدمهای بر پیلهای سوختی
1-1- مقدمه
امروزه در استفاده از سوخت‌های فسیلی که 80 درصد انرژی زمین را تأمین می‌کنند دو مشکل اساسی وجود دارد. اول اینکه ذخایر این سوخت‌ها محدود است و دیر یا زود تمام خواهند شد. دوم اینکه سوخت‌های فسیلی از عوامل اساسی ایجاد مشکلات زیست محیطی مثل گرم شدن کره زمین، تغییرات آب و هوایی، ذوب کوه‌های یخی، بالا آمدن سطح دریاها، باران‌های اسیدی، از بین رفتن لایه ازن و … هستند [1].
در اوایل سال 1970 استفاده از انرژی هیدروژن برای حل مشکلات ناشی از مصرف سوخت‌های فسیلی پیشنهاد شد. هیدروژن یک منبع انرژی عالی با ویژگی‌های فراوان است. هیدروژن سبک‌ترین، تمیزترین و پربازده‌ترین سوخت بهحساب میآید. یکی از ویژگی‌های هیدروژن این است که طی فرآیندهای الکتروشیمیایی در پیلهای سوختی می‌تواند به انرژی الکتریکی تبدیل شود. قابل ذکر است بازده چنین تبدیلی در پیل سوختی بالاتر از راندمان یک موتور احتراق داخلی است که انرژی سوخت فسیلی را به انرژی مکانیکی تبدیل میکند. علاوه بر این سوخت، سوخت‌های دیگری نیز همچون الکل‌ها بهخصوص متانول و اتانول بهدلیل چگالی بالای انرژی و آسانی ذخیره‌سازی و حمل آنها نیز مورد توجه قرار گرفته‌اند.
1-2- پیل سوختی چیست؟
پیل سوختی یک وسیله الکتروشیمیایی است که انرژی شیمیایی سوخت را بهطور مستقیم به انرژی الکتریکی تبدیل میکند. معمولاً فرآیند تولید انرژی الکتریکی از سوخت‌های فسیلی شامل چند مرحله تبدیل انرژی است :
• احتراق که انرژی شیمیایی سوخت را به گرما تبدیل میکند.
• گرمای تولید شده برای به‌جوش آوردن آب و تولید بخار استفاده میشود.
• بخار، توربینی را به حرکت در می آورد و در این فرآیند انرژی گرمایی به انرژی مکانیکی تبدیل میشود.
• انرژی مکانیکی باعث راهاندازی یک ژنراتور و در نتیجه تولید انرژی الکتریکی میشود.
در یک پیل سوختی برای تولید انرژی الکتریکی نیازی به عمل احتراق نیست و هیچ بخش متحرکی مورد استفاده قرار نمی‌گیرد، بهعبارت دیگر بهجای سه مرحله تبدیل انرژی، در یک مرحله انرژی الکتریکی تولید می‌شود (شکل1-1).
موتور احتراق داخلی
پیل سوختی
شکل 1-1- مقایسه تبدیلات انرژی در فرایند تولید انرژی از سوخت‌های فسیلی با روند تولید انرژی در پیل‌های سوختی.
نکته مهم دیگر که به آن می‌توان اشاره داشت این است که این پیل‌ها موتورهای الکتروشیمیایی هستند نه موتور گرمایی و بههمین دلیل تابع محدودیت سیکل کارنو نبوده و لذا بازده آنها بالا می‌باشد.
مزایای فناوری پیل سوختی عبارتند از:
• آلودگی بسیار پایین و در حد صفر.
پیلهای سوختی که با هیدروژن کار میکنند آلودگی در حد صفر دارند و تنها خروجی آنها هوای اضافی و آب می‌باشد. این ویژگی نیز باعث شده پیل‌های سوختی نه تنها برای حمل و نقل مورد توجه قرار گیرند بلکه برای کاربردهای خانگی و نظامی نیز مورد استفاده قرار گیرند. اگر پیل سوختی از سوخت دیگری برای تولید هیدروژن مورد نیاز خود استفاده کند یا اگر متانول را جایگزین هیدروژن در پیل سوختی کنیم آلودگی‌هایی از جمله دیاکسید‌کربن تولید میشود، ولی مقدار این آلودگیها کمتر از آلودگیهایی است که وسایل معمول تولید انرژی بهوجود میآورند.
• وابستگی کمتر به نفت.
هرچند هیدروژن به سادگی در دسترس نیست ولی میتوان آن را از الکترولیز آب یا سوختهای هیدروکربنی بهدست آورد.
• عدم وجود بخشهای متحرک و طول عمر بالا.
از آنجایی که پیل سوختی هیچ بخش متحرکی ندارد از نظر تئوری در شرایط ایدهآل طول عمر یک پیل سوختی تا زمانی که سوخت به آن میرسد می‌تواند بی‌نهایت باشد.
• وزن و اندازه.
پیل‌های سوختی در ظرفیتهای متفاوتی ساخته میشود (از میکرووات تا مگاوات) که باعث میشود برای کاربردهای مختلف مورد استفاده قرار گیرند.
• آلودگی صوتی بسیار پایین.
• راندمان بالا نسبت به فناوری‌های دیگر [2].
1-3- تاریخچه
در سال 1839 ویلیام گرو1 فیزیکدان و روزنامه نگار انگلیسی اصول کار پیل سوختی را کشف کرد (شکل 1-2). گرو، چهار پیل بزرگ که هر کدام دارای ظرفی محتوی هیدروژن و اکسیژن بودند را برای تولید الکتریسیته بهکار برد. الکتریسیته حاصل آب را در یک ظرف کوچک‌تر به اکسیژن و هیدروژن تبدیل می‌‌‎کرد [1].

شکل1 -2- پیل سوختی اولیه ساخته شده [1].
اما سابقه تولید پیل سوختی به سال 1889 بر میگردد که اولین پیل سوختی توسط لودویک مند2 و چارلز لنجر3 ساخته شد. در اوایل قرن بیستم تلاشهایی در جهت توسعه پیل سوختی صورت گرفت. در سال 1995 پیل سوختی قلیایی پنج کیلوواتی ساخته شد.
از سال 1960 سازمان فضایی آمریکا (ناسا) از پیلهای مزبور در سفینههای جیمینی و آپولو جهت تولید الکتریسیته و تهیه آب مورد نیاز فضانوردان استفاده کرد. در طی دهه هفتاد فنآوری پیل سوختی در وسایل خانگی و خودرو بهکار گرفته شد. اولین خودروی مجهز به پیل سوختی حدود سال 1970 توسط شرکت جنرال موتورز آمریکا ساخته شد. با سرمایهگذاری جدی وزارت انرژی آمریکا از زمان جنگ خلیج فارس و نیز سرمایه گذاری بعدی این وزارتخانه فنآوری پیل سوختی توسعه چشمگیری پیدا کرده است.
از دهه هشتاد به بعد شرکت بالارد در کانادا تحت حمایت دولت با انجام پروژه ساخت زیردریایی که در آن از پیل سوختی استفاده میشد بهعنوان پیشرو این صنعت در دنیا معرفی شد.
هواپیمای پیل سوختی ناسا در سال 2000 میلادی با نیروی محرکه دوگانه باتری خورشیدی و پیل سوختی مورد بهرهبرداری قرار گرفت که توان پرواز طولانی (شش ماه) بدون وقفه را دارد.
پیشرفت‌های بعدی همه در جهت بهینه کردن هر چه بیشتر این پیل‌ها و افزایش بازده کارآیی آنها میباشد تا این پیلها را به شکل یک محصول تجاری در دسترس تبدیل کنند [2].
1-4-کاربردهای پیل سوختی
در شکل (1-3) منابع تأمین کننده هیدروژن و تقاضاهای مورد استفاده از هیدروژن و سهم هر یک به صورت شماتیک رسم شده است.
شکل 1-3- منابع تأمین کننده هیدروژن و تقاضاهای استفاده از هیدروژن [3].
همان‌طوریکه در شکل 1-4 مشخص است، می‌توان کاربردهای پیل سوختی را به سه بخش کاربرد وسایل قابل حمل، کاربرد در بخش حمل و نقل و وسایل متحرک و کاربردهای نیروگاهی تقسیم نمود.
شکل 1-4- کاربردهایی از پیل سوختی در سیستم حمل و نقل دریایی، زمینی، وسایل پرتابل و مصارف نیروگاهی [3].
1-5- انواع پیل سوختی
پیل‌های سوختی بر اساس نوع الکترولیت استفاده شده در آنها به پنج نوع اصلی زیر طبقهبندی می‌شوند [4]:
• پیل سوختی پلیمری با غشاء مبادله کننده پروتون
• پیل سوختی قلیایی
• پیل سوختی اسیدفسفریک
• پیل سوختی کربنات مذاب
• پیل سوختی اکسید جامد
پیل‌های سوختی دارای دامنه دمایی از 80 درجه سانتی‌گراد برای پیل سوختی پلیمری تا بیش از 1000 درجه سانتی‌گراد برای پیل سوختی اکسید جامد می‌باشند. پیل سوختی دما پایین (پلیمری ، قلیایی، اسید فسفریک) دارای حامل‌هایH+ و یا OH- هستند و در پیل‌های سوختی دما بالا مانند کربنات مذاب و اکسید جامد، جریان الکتریکی بهترتیب از طریق یون‌ها انتقال می‌یابد.
1-5-1- پیل سوختی پلیمری با غشاء مبادله کننده پروتون4
قبل از اختراع پیل سوختی پلیمری، پیل‌های سوختی مانند پیل‌های سوختی اکسید جامد تنها در شرایط خاصی مورد استفاده قرار گرفتند. چنین پیل‌هایی به مواد بسیار گرانقیمت احتیاج داشتند و بهدلیل اندازه خاصشان تنها برای کارهای ثابت بهکار برده می‌شدند. این موارد در پیل سوختی پلیمری نیز بههمین صورت بود. پیل سوختی پلیمری در اوایل دهه 1960 توسط ویلیام تماس گراب5 و همکاران از شرکت جنرال الکتریک ابداع شد. در ابتدا، غشاهای پلی استیرن سولفامات برای الکترولیت مورد استفاده قرار می‌گرفتند، اما در سال 1966 پلیمر نفیون6 جایگزین آن گردید که دارای دوام و عملکرد بهتری نسبت به پلیاستیرن سولفامات میباشد [5-6]. پیل‌های سوختی پلیمری در ناسا برای سفینههای فضایی مورد استفاده قرار می‌گرفتند اما آن‌ها در برنامههای آپولو و شاتل فضایی توسط پیل‌های سوختی آلکالین جایگزین شدند. چندین اختراع خاص مثل بارگذاری اندک کاتالیزور پلاتین و الکترود فیلم نازک، هزینه پیلهای سوختی را کاهش داده و باعث توسعه سیستمهای پیل سوختی پلیمری شد. در سال اخیر بهدلیل پیشرفت تکنولوژی و موفقیت در استفاده از پیل سوختی پلیمری در اتوبوس‌های شهری و اتومبیلهای شخصی افق‌های امیدبخشی برای گسترش روزافزون استفاده از این پیل پدیدار شده است بهطوری که می‌توان ادعا کرد پیل سوختی پلیمری، مرحله تجاری شدن خود را آغاز کرده است [7].
جزء اصلی پیل سوختی پلیمری که هادی پروتون و عایق الکترون می‌باشد، غشاء7 نام دارد. در دو طرف این غشاء الکترودهای متخلخل8 قرار دارند. گازهای واکنش دهنده از بین خلل آن گذشته و خود را به فصلمشترک الکترود و غشاء جایی که واکنش الکتروشیمیایی انجام می‌شود و لایه کاتالیزور9وجود دارند، می‌رسانند. این مجموعه چند لایه شامل الکترودها، کاتالیزور‌ها و غشای بین آنها را MEA10 می‌نامند. در دو طرف MEA صفحات جمع‌کننده جریان قرار دارند. بهدلیل آن که این صفحات وظیفه و هدایت جریان الکتریکی تولید شده را بهعهده دارند همچنین جدا کننده کانال‌های گازی در سل‌های مجاور بوده و در یک ترکیب چند سلی اتصال دهنده فیزیکی و الکتریکی کاتد یک سل با آند دیگر می‌باشند، بهصفحات دو قطبی11 معروف هستند [8-9].
دمای کار پایین پیل سوختی پلیمری (حدود 80 درجه سانتی گراد) اگرچه سبب راهاندازی سریع و افزایش طول عمر پیل میشود اما نرخ فعل و انفعالات الکتروشیمیایی پیل پایین آمده و استفاده از کاتالیزور (فلز گران قیمت پلاتینیوم) ضروری میشود. واکنش‌های الکتروشیمیایی پیل سوختی پلیمری را می‌توان بهطور خلاصه بهاینصورت نوشت:
H2 → 2H+ + 2e- (1-1) 2/1O2 + 2e- + 2H+ → H2O (1-2)
از جمع دو واکنش آند و کاتد ، واکنش نهایی را می‌توان بهصورت کلی زیر نوشت :
H2 + 2/1 O2 → H2O + Heat + Electric Energy (1-3)
الکترون تولید شده در آند از مدار خارجی می‌گذرد و حین گذر انرژی خود را بهعنوان توان خروجی پیل آزاد و در طرف کاتد واکنش را تکمیل می‌کند [10].
شکل 1-5- نحوه‌ی عملکرد پیل سوختی پلیمری [3].
1-6- پیلهای سوختی الکلی مستقیم12
پیلهای سوختی الکلی مستقیم بهدلیل مزایای ویژهای که در مقایسه با پیلهای سوختی هیدروژنی دارند بهعنوان منبع انرژی در وسایل قابل حمل بسیار مورد توجه قرار گرفتهاند. الکلهایی مانند متانول، اتانول، اتیلنگلیکول و گلیسرول بهدلیل چگالی انرژی حجمی بالا و همچنین به علت ذخیره و حمل بسیار راحتتر از هیدروژن، بهعنوان سوخت این پیلهای سوختی مورد استفاده قرار گرفتهاند. در این بین، متانول بیشترین استفاده را بهعنوان سوخت داشته است. پیل سوختی متانولی مستقیم13 معمولا در محیط اسیدی و با کاتالیزور پلاتین مورد استفاده قرار گرفته است. اما بهدلیل مشکلاتی از قبیل 1- مسمومیت کاتالیزور Pt بوسیله CO 2- اثر میانعبورمتانول 3- تخریب غشاء و خوردگی مواد کربنی 4- مسمومیت متانول، که DAFC وجود دارد، در تحقیقات گستردهای برای استفاده از الکلهای دیگر در DAFCs انجام شده است. الکلهایی با وزن مولکولی بالاتر بهدلیل حلالیت بالا درآب، سمیت کمتر، نقطه جوش بالاتر و دانستیه انرژی بالاتر مورد توجه قرار گرفتهاند. الکلهایی مانند اتانول، اتیلنگلیکول و گلیسرول بهدلیل داشتن چنین مزایایی بیشترین توجه را به خود جلب کردهاند [12-11]. الکلها به دو صورت می‌توانند در پیلهای سوختی مورد استفاده قرار بگیرند. اگر از الکلها برای تولید هیدروژن مورد استفاده در پیلهای سوختی استفاده شود چنین پیل سوختی را پیل سوختی الکلی غیرمستقیم می‌نامند و اگر از الکلها بهطور مستقیم بهعنوان سوخت در پیلهای سوختی استفاده شود، پیل سوختی را الکلی مستقیم مینامند.
1-7- سوختهای مورد استفاده در پیلهای سوختی الکلی
برای بهبود عملکرد پیل سوختی و کمک به سلامت محیط زیست، سوخت مورد استفاده در پیلهای سوختی باید دارای شرایطی باشد: اولاً دارای ولتاژ سل بالایی باشد ثانیاً موجب کاهش انتشار CO2 و دیگر آلودگیها شود.
هیدروژن اولین سوخت مورد استفاده در پیلهای سوختی است ولی بهدلیل مشکلاتی که دارد تلاش‌های زیادی برای استفاده از سوختهای جایگزین انجام شده است. سوختهای الکلی، سوختهایی هستند که به‌عنوان جایگزین هیدروژن توجه زیادی را بهخود جلب کردهاند.
استفاده از الکلها در پیلهای سوختی الکلی مستقیم دو مزیت را بههمراه خواهد داشت اولاً اینکه این سوختها مایع هستند و مشکلات مربوط بهذخیره را بهحداقل میرسانند و ثانیاً اینکه بیشتر آنها میتوانند از زیست تودهها تولید شوند بدین معنی که احتراق آنها تاثیر زیادی در افزایش اتمسفر نخواهد داشت.
1-7-1- متانول بهعنوان سوخت
متانول یا الکل متیلیک دارای وزن مولکولی gr mol-1 04/32 و چگالی gr cm-3 796/0 میباشد. در حال حاضر قسمت عمدۀ متانول دنیا از گاز طبیعی بهدست میآید. ذخایر دیگر مانند زغال سنگ، ضایعات چوب و یا مواد آلی دیگری مانند زیست توده نیز میتوانند بهعنوان ماده اولیه جهت تولید متانول بهکار روند. متانول از چوب و زغال سنگ نیز قابل تولید است. البته تولید آن از منابع طبیعی و تجدیدشونده در مقایسه با گاز از لحاظ اقتصادی گرانتر است.
متانول بهعنوان سوخت در وسایل نقلیه نیز بهکار گرفته شده است، بهخصوص مخلوط متانول با بنزین مد نظر بوده است. متانول از یک واکنش کاتالیزوری تحت فشار بهدست میآید که در آن CO و هیدروژن در حضور یک کاتالیزور با هم ترکیب شده و متانول سنتز میشود. متانول به دو روش مستقیم و غیرمستقیم به‌منظور تأمین انرژی در پیل سوختی بهکار گرفته میشود. پیلهای سوختی چنانچه از متانول استفاده کنند از مزایای بازدهی بالا جهت تولید انرژی برخوردار خواهند بود و چنانچه در آنها از اتلاف حرارت جلوگیری شود میتوانند بازده بیش از 80 درصد داشته باشند. این موضوع استفاده از متانول را از لحاظ اقتصادی مقرون بهصرفه مینماید [13].
1-7-1-1- پیل سوختی متانول مستقیم
پیل سوختی متانولی مستقیم زیر مجموعهای از پیلهای سوختی تبادل پروتون و از خانوادۀ پیلهای سوختی پلیمری است. سوخت در این پیل سوختی متانول میباشد که مستقیماً پیل سوختی را تغذیه می‌کند. این پیل سوختی تاکنون در وسایل نقلیه، گوشیهای موبایل، دوربینهای دیجیتال و لپتاپها مورد استفاده قرار گرفته است.
متانول همراه آب در لایۀ کاتالیزوری اکسید میشود و دیاکسیدکربن، یون H+ و الکترون تولید می‌کند. یونهای H+ تولید شده در آند از غشای تبادل پروتون عبور کرده و به طرف کاتد انتقال مییابد و در آنجا با اکسیژن واکنش میدهد و تولید آب میکند. الکترون نیز از مدار خارجی از آند به کاتد جهت تولید نیرو در وسایل خارجی، منتقل میشود. نیم واکنشهای آند و کاتد در این پیل سوختی عبارتند از:
(1-4) CO2 +6 H+ +6 e− CH3OH + H2O
(1-5) 3H2O O2 + 6H+ + 6e−2/3
از جمع کل دو واکنش آندی و کاتدی، واکنش نهایی پیل سوختی متانولی را میتوان بهصورت زیر نوشت:
(1-6) CH3OH + 3/2 O2 CO2 + 2H2O + Electeric Energy + Heat
در شکل (1-6) پیل سوختی متانولی و چگونگی عملکرد آن بهصورت شماتیک نشان داده شده است [5].
شکل 1-6- نحوه‌ی عملکرد پیل سوختی متانولی مستقیم.
آب در آند مصرف و در کاتد تولید میشود . با توجه به طریقۀ انتقال آب از سمت کاتد به آند، پیل سوختی متانولی به دو نوع فعال و غیرفعال تقسیم بندی میشود. در پیل سوختی متانولی غیرفعال آب از طریق انتقال غیرفعال مثل اسمز بهسمت آند منتقل میشود و در پیل سوختی متانولی فعال آب از طریق انتقال فعال مثل پمپ کردن بهسمت آند منتقل و مصرف میشود [3].
پیل سوختی متانولی مزایایی نسبت به پیل سوختی پلیمری دارد که عبارتند از:
• جریان سوخت آندی مایع است و نیازی به یک سیستم جانبی برای سرد کردن و مرطوب کردن گاز نیست.
• بهجهت استفاده از سوخت مایع در آند، نیازی به پمپ کردن بی مورد14 در مقایسه با سوخت گازی نیست.
• با فراهم کردن دانسیته بالایی از سوخت مایع در فشار محیط15 مشکلات ناشی از نگهداری سوخت گازی از بین میرود.
• متانول قابل حمل و به فراوانی در دسترس است.
اگرچه پیل سوختی متانولی نسبت به پیل سوختی پلیمری دارای مزایایی است، با این وجود جهت تجاری سازی با محدودیتهایی مواجه است که مهمترین آنها عبارتند از:
• پیل سوختی متانولی غیرفعال به مدیریت آب16 نیاز دارد زیرا لازم است یک اختلاف فشار هیدرولیکی بین آند و کاتد وجود داشته باشد تا به هدایت آب از سمت کاتد به آند منجر شود. در این صورت برای رسیدن به عملکرد مناسب این نوع از پیلهای سوختی لازم است از جریان شدید آب به سمت آند جلوگیری شود.
• میانعبور متانول17 بهخاطر غلظت بالای متانول در طرف آندی، از سمت آند به کاتد از میان غشاء وجود دارد. در این هنگام اکسایش متانول در سمت کاتد منجر به ایجاد پتانسیل مخلوط میشود که ولتاژ مدار باز18 (OCV) پیل سوختی متانولی را از مقدار تئوری 02/1 ولت به 8/0 -7/0 ولت کاهش میدهد.
• سینتیک واکنش آندی به خاطر واکنش اکسایش پیچیده متانول در آند ذاتاً از سرعت کمی برخوردار است که لازم است در مقایسه با پیل سوختی پلیمری مقدار فلز گران قیمت بیشتری استفاده شود.
• جریان مخالفی19 از حبابهای دیاکسیدکربن (CO2) که در سطح آند تولید میشود در منطقه نفوذ20 با جریان سوخت مایع متانول درگیر می‌شود و دسترسی مولکولهای متانول به لایه کاتالیزور را محدود میکند.
• متانول تا حدودی سمی است و نسبت به بنزین آسانتر به داخل زمین نفوذ میکند، آتش گیری بالایی دارد و قابل امتزاج با آب است، لذا آلودگی مخازن آب بهراحتی میتواند صورت گیرد [3].
موضوع مهم دیگر درDMFC، میانعبور متانول از آند بهسمت کاتد از طریق کشش الکترواسمزی21 و نفوذ است.
میانعبور متانول از آند به کاتد منجر به اثرات محدود کننده ای در عملکرد پیل سوختی به شرح زیر میشود [14] :
• اکسایش متانول در این منطقه دو کاتالیزور را مسموم میکند و پتانسیلی مخلوط در کاتد ایجاد می شود، اکسیژن را هدر میدهد و مقدار فراوانیOCV را کاهش میدهد و تأثیرات سوء پیش آمده شدیدتر از تأثیرات مشابه در میانعبور هیدروژن در سیستم هایH2PEFC است. OCV نوعیDMFC مشخصاً پایین تر از 8/0 ولتاست.
• نشت بی مورد: میانعبور سوخت از غشاء بدون ایجاد و تولید جریان منجر به کارآیی پایین می شود.
بهمنظور جلوگیری ازمیانعبور متانول چندین رویه مورد استفاده قرار می گیرد:
• استفاده از محلولهای رقیق متانول: استفاده از محلول متانول با مولاریته پایین (5/0 – 2/0 مولار) با کاهش غلظت متانول در آند، میانعبور را کاهش می دهد. بههر حال، این رویه به ناچار منجر به استفاده از تانک های نگه داری بزرگ سوخت میشود و پمپ آب بیشتری را میطلبد.
• استفاده از الکترولیت ضخیمتر: الکترولیت ضخیمتر میتواند میانعبور را محدود کند و همینطور عملکرد پیل را از طریق افزایش افت اهمی از میان الکترولیت کاهش میدهد.
• یک مانع نفوذ22 روی آند: یک مانع نفوذ، جایگزینی برای الکترولیت ضخیم تر است که محدودیت نفوذ را در منطقه ای انتقال یونی تحت تأثیر قرار نگیرد، قرار می دهد. یک مانع نفود منجر به یک گرادیان غلظت تند از محیط نفوذ تا مانع می شود بهطوریکه غلظت متانول در لایه کاتالیست کم شده و میانعبور را کاهش میدهد [14].
1-7-2- 2- پروپانول
2-پروپانول یا ایزوپروپیل الکل یک الکل نوع دوم می‌باشد که کربنی که حامل گروه –OH است، خود به دو کربن دیگر متصل است. فرمول شیمیایی این الکل CH3CHOHCH3 می‌باشد. این ماده یک ترکیب شیمیایی قابل اشتعال و بدون رنگ با بوی قوی است. ایزوپروپیل الکل درآب، الکل، اتر وکلروفرم قابل حل است. این الکل می‌تواند به استون اکسید ‌شود. این را می‌توان با استفاده از یک عامل اکسید کننده مانند اسیدکرومیک، ویا با هیدروژنزدایی ایزوپروپیل الکل بهدست آورد.
از ایزوپروپیل الکل بهعنوان حلال برای فرآیندهای صنعتی همچنین بهعنوان یک افزودنی به بنزین استفاده میشود. ایزوپروپیل الکل بهویژه برای کاربردهای دارویی، با توجه به سمیت کم مورد استفاده قرار می‌گیرد. گاهی از ایزوپروپیل الکل بهعنوان یک واسطه شیمیایی استفاده میشود. از عمده موارد کاربرد دیگر این الکل در صنعت چاپ میباشد زیرا الکلهای مشابه نظیر 2-پروپانول دمای آب را در دستگاههای چاپ بسیار پائین نگاه داشته و قابلیت تبخیر پائینی دارد. از این الکل به مقدار بسیار کم برای استفاده خانگی و در محصولات مراقبت شخصی استفاده می‌شود.
1-7-2-1- پیل سوختی 2-پروپانولی مستقیم
از 2-پروپانول به‌دلیل سمیت کمتر و عدم عبور از غشاء پیل سوختی می‌توان به‌عنوان سوخت استفاده کرد. اگر از 2-پروپانول به‌طور مستقیم در آند پیل سوختی استفاده شود به این پیل سوختی، پیل سوختی 2-پروپانولی مستقیم می‌گویند. بررسیهایی که روی عملکرد این پیل در غلظتهای مختلف الکل، درجه حرارت سل و شرایط مختلف با اکسیدان اکسیژن انجام شده است نشان میدهد که این پیل در محیط اسیدی عملکرد بالاتری از پیل سوختی متانولی مستقیم، مخصوصا در چگالی جریان کمتر از حدود 200 میلی آمپر بر سانتی متر مربع را دارد. 2-پروپانول میتواند ولتاژ مدار باز بیشتر، میانعبور کمتر و بازده بالاتری نسبت به متانول داشته باشد، بههمین جهت میتوان از 2-پروپانول بهعنوان سوخت پیل سوختی الکلی مستقیم استفاده کرد. اما یکی از مشکلات 2-پروپانول بهعنوان سوخت، مسمومیت کاتالیزور آندی مورد استفاده میباشد. واکنش کلی اکسایش 2-پروپانول بهصورت زیر است [15]:
CH3CHOHCH3 + 18 OH− → 3CO2 + 13 H2O + 18 e− (7-1)
1-7-3- پروپیلنگلیکول
پروپیلنگلیکول یا 1و2-پروپان‌دی‌ال با فرمول شیمیایی C3H8O2 یک مایع بیرنگ و جاذب رطوبت است. پروپیلنگلیکول صنعتی، ازپروپیلناکسید تولید میشود. همچنین پروپیلنگلیکول میتواند ازگلیسرول، که یک محصول جانبی بیودیزل است نیز تولید شود. پروپیلنگلیکول الکلی ویسکوز، با فراریت پایین، غیرخورنده و بر خلاف اتیلنگلیکول سمیت پایینی دارد. این الکل بهدلیل بو و طعم و مزه معمولا برای استفادههای صنعتی مورد توجه قرار گرفته است. 45٪ از پروپیلنگلیکول تولید شده بهعنوان مواد خام شیمیایی برای تولید رزینهای پلیاستر غیراشباع مصرف میشود. در این راستا، پروپیلنگلیکول با مخلوطی از انیدریدمالئیک غیراشباع و ایزوفتالیکاسید برای تشکیل یک کوپلیمر واکنش میدهد. پروپیلنگلیکول به‌عنوان مادهای ایمن برای استفاده در موادغذایی توسط سازمان غذا و داروی ایالات متحده شناخته شده، وآن را بهعنوان حلال و نگهدارنده در مواد غذایی، در محصولات توتون و تنباکو (سیگارهای الکتریکی) و به‌عنوان حلال در بسیاری ازمواد دارویی، و فرمولاسیونهای خوراکی استفاده میشود. این الکل مانند اتیلن‌گلیکول، قادر به کاهش نقطه انجماد آب است، بههمین دلیل از آن بهعنوان ضدیخ در هواپیما و اتومبیل استفاده میشود.
1-7-3-1- پیل سوختی 1و2-پروپاندیال مستقیم
پیل سوختی 1و2-پروپاندیال مستقیم نیز، زیر مجموعهای از پیلهای سوختی تبادل پروتون می‌باشد که در آن 1و2-پروپاندیال مستقیماً به پیل سوختی خورانده میشود. پروپیلنگلیکول مایع در آند، اکسید شده و تولید CO2، الکترون و آب مینماید. در کاتد نیز اکسیژن هوا و الکترون واکنش میدهند. واکنشهای انجام شده در این پیل به شرح ذیل میباشد:
واکنش آندی C3H8O2 + 16OH- 3CO2 + 12 H2O + 16e- (1-8)
واکنش کاتدی1/2O2 + H2O + 2e- 2OH – (1-9)
یکی از مزیتهای اصلی استفاده از پروپیلنگلیکول بهعنوان سوخت این است که سینتیک واکنش آندی آن در محیط قلیایی سریعتر از متانول است ولی مطالعات کمی در زمینه اکسیداسیون آن روی فلزاتی مانند پلاتین انجام شده است. معایب و مزایای سوختهای مورد استفاده در پیلهای سوختی در جدول 1-1 ذکر شده است.
جدول 1-1- معایب و مزایای سوختهای مورد استفاده در پیلهای سوختی.
سوختمزایامعایبهیدروژنپاک (تنها محصول جانبی آب است)، واکنش آندی سریعمشکلات ذخیره (چگالی پایین و نشت گاز)، امنیت پائین هیدوژنمتانولارزان، مایع، تولید از زیست تودهواکنش آندی کند، اشتعال پذیر، سمیت و میانعبور متانول2-پروپانولسمیت کمتر نسبت به متانول و عدم عبور از غشاء پیل سوختیواکنش آندی کند در محیط قلیایی، تولید از منابع تجدیدناپذیر1و2- پروپاندیالسمیت کم، فراریت کم، غیرخورنده، سنتیک واکنش آندی در محیط قلیایی سریعتر از متانولواکنش آندی کند در مقایسه با پیل سوختی هیدروژنی

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

1-8-کاتالیزور مورد استفاده در آند پیلهای سوخت

دسته بندی : پایان نامه

پاسخ دهید